TitleInnate Immune Dysfunction in Rosacea Promotes Photosensitivity and Vascular Adhesion Molecule Expression.
Publication TypeJournal Article
Year of Publication2020
AuthorsKulkarni NN, Takahashi T, Sanford JA, Tong Y, Gombart AF, Hinds B, Cheng JY, Gallo RL
JournalJ Invest Dermatol
Volume140
Issue3
Pagination645-655.e6
Date Published2020 Mar
ISSN1523-1747
Abstract

Rosacea is a chronic skin disease characterized by photosensitivity, abnormal dermal vascular behavior, inflammation, and enhanced expression of the antimicrobial peptide LL-37. We observed that dermal endothelial cells in rosacea had an increased expression of VCAM1 and hypothesized that LL-37 could be responsible for this response. The digestion of double-stranded RNA from keratinocytes exposed to UVB blocked the capacity of these cells to induce adhesion molecules on dermal microvascular endothelial cells. However, a synthetic noncoding snoU1RNA was only capable of increasing adhesion molecules on endothelial cells in the presence of LL-37, suggesting that the capacity of UVB exposure to promote both double-stranded RNA and LL-37 was responsible for the endothelial response to keratinocytes. Sequencing of RNA from the endothelial cells uncovered the activation of Gene Ontology (GO) pathways relevant to the human disease, such as type I and II interferon signaling, cell-cell adhesion, leukocyte chemotaxis, and angiogenesis. Functional relevance was demonstrated as double-stranded RNA and LL-37 promoted adhesion and transmigration of monocytes across the endothelial cell monolayers. Gene knockdown of TLR3, RIGI, or IRF1 decreased monocyte adhesion in endothelial cells, confirming the role of the double-stranded RNA recognition pathways. These observations show how the expression of LL-37 can lead to enhanced sensitivity to UVB radiation in rosacea.

DOI10.1016/j.jid.2019.08.436
Alternate JournalJ. Invest. Dermatol.
PubMed ID31472105