English

Resumen

  • El fluoruro es la forma iónica del elemento de origen natural conocido como flúor. El anión incrementa la estabilidad estructural de los dientes y huesos a través de interacciones con fosfatos de calcio. (Más información)
  • Las recomendaciones de ingesta diaria para el fluoruro están basadas en las ingestas más seguras y efectivas para prevenir la caries dental. (Más información)
  • El uso de productos dentales fluorurados e ingestas adecuadas de fluoruro reducen la ocurrencia de caries durante toda la vida al promover la mineralización dental y re-mineralización. Estudios exhaustivos aleatorios controlados con placebo son requeridos para evaluar si la aplicación tópica de agentes fluorados pudiesen también prevenir la erosión dental. (Más información)
  • Evidencia clínica y epidemiológica es actualmente limitada para apoyar el papel de la fluoración del agua en la prevención de la osteoporosis y fracturas óseas. (Más información)
  • Ensayos terapéuticos han encontrado un efecto dependiente de la dosis de fluoruro en el riesgo de fracturas en pacientes osteoporóticos. Sin embargo, la ocurrencia de numerosos efectos secundarios justifica estudios adicionales para garantizar que dosis seguras y efectivas puedan ser usadas solas o en combinación con terapias actuales. (Más información)
  • Las fuentes principales de fluoruro sistémico y tópico son el agua potable, alimentos y bebidas hechas con agua fluorada, fórmulas para infantes, y productos de cuidado oral que contienen fluoruro. La sal y leche fluoradas están actualmente disponibles fuera de los Estados Unidos en Europa, Latinoamérica, y el Sureste de Asia. (Más información)
  • Aunque el aumento de la exposición al fluoruro ha llevado a una disminución en la caries dental, la prevalencia de motas blancas o manchas permanentes en los dientes conocidos como fluorosis, ha incrementado. La homeostasis del tejido óseo puede también ser afectada por la excesiva ingesta de fluoruro. (Más información)

El fluoruro se origina naturalmente como el ion cargado negativamente, fluoruro (F-). El fluoruro es considerado un elemento traza porque solo pequeñas cantidades están presentes en el cuerpo (alrededor de 2.6 gramos en adultos), y porque el requerimiento diario para el mantenimiento de la salud dental es solo unos pocos miligramos al día. Alrededor del 95% del fluoruro total del cuerpo es encontrado en los huesos y dientes (1). Aunque su papel en la prevención de la caries dental, está bien establecido, el fluoruro no es generalmente considerado con un elemento mineral esencial porque los humanos no lo requieren para el crecimiento o para sustentar la vida (2). Sin embargo, si uno considera la prevención de enfermedades crónicas (caries dental) como un criterio importante en la determinación de la esencialidad, entonces el fluoruro podría considerarse como un elemento traza esencial (3).

Función

El fluoruro es absorbido en el estómago y en el intestino delgado. Una vez en el torrente sanguíneo penetra rápidamente en los tejidos mineralizados (huesos y dientes en desarrollo). A niveles de ingesta usuales, el fluoruro no se acumula en los tejidos blandos. Los elementos minerales predominantes en el hueso son cristales de calcio y fosfato, conocidos como cristales de hidroxiapatita. La alta reactividad química y el pequeño radio del fluoruro le permiten desplazar al ion hidroxilo (-OH) más grande, en el cristal de hidroxiapatita formando fluorapatita, o incrementar la densidad cristalina al entrar en los espacios dentro del cristal de hidroxiapatita. La fluorapatita endurece el esmalte dental y estabiliza el mineral óseo (4).

Interacción con nutrientes

Tanto el calcio como el magnesio forman complejos insolubles con el fluoruro y son capaces de disminuir significativamente la absorción de fluoruro cuando están presentes en la misma comida. Sin embargo, la absorción de fluoruro en la forma de monofluorofosfato (a diferencia del fluoruro de sodio) no es alterada por el calcio. También se ha encontrado que una dieta baja en cloruro (sal) incrementa la retención de fluoruro al reducir la excreción urinaria de fluoruro (1).

Deficiencia

En los seres humanos, el único efecto claro de una ingesta inadecuada de fluoruro es el riesgo incrementado de caries dental (caries) en individuos de todas las edades. Investigaciones epidemiologias de los patrones de consumo de agua y la prevalencia de caries dental a través de varias regiones de los EE.UU. con diferentes concentraciones de fluoruro, condujeron al desarrollo de un rango óptimo recomendado de la concentración de fluoruro de 0.7-1.2 mg/L o partes por millón (ppm); la concentración más baja fue recomendada para climas más cálidos donde el consumo de agua es más alto, y la concentración más alta fue recomendada para climas más fríos. Recientemente, el Departamento de Salud y Servicios Humanos de los EE.UU. recomendó que todos los sistemas de agua de uso comunitario se ajustara a la concentración de fluoruro de 0.7 mg/L, agregando “datos recientes no muestran una relación convincente entre la ingesta del líquido y la temperatura ambiente del aire” (5). Esta recomendación fue hecha en un esfuerzo por reducir el riesgo de fluorosis dental y en vista de la amplia disponibilidad de flúor a través de otras fuentes, incluyendo productos del cuidado oral fluorados (6). Un numero de estudios conducidos antes de la introducción de las pastas dentales con fluoruro demostraron que la prevalencia de caries dentales fue de un 40% a 60% más bajo en comunidades con concentraciones optimas de fluoruro en el agua que en comunidades con bajas concentraciones de fluoruro en el agua (7).

La Ingesta Adecuada (IA)

La Junta de Nutrición y Alimentos (JNA) del Instituto de Medicina estadounidense actualizó sus recomendaciones para la ingesta de fluoruro en 1997. Debido a que los datos fueron insuficientes para establecer una Ingesta Diaria Recomendada (IDR); en cambio, los niveles de Ingesta Adecuada (IA) fueron establecidos basados en las ingestas estimadas (0.05 mg/kg de peso) que demostraron reducir de forma más efectiva la ocurrencia de caries dental sin causar el indeseable efecto secundario de manchas en el esmalte, conocido como fluorosis dental (7). Vea la siguiente sección sobre Seguridad para un análisis de la fluorosis dental.


Ingesta Adecuada (IA) para Fluoruro
Etapa de la Vida Edad Hombres (mg/día) Mujeres (mg/día)
Infantes  0-6 meses 0.01 0.01
Infantes  7-12 meses  0.5 0.5
Niños  1-3 años  0.7 0.7
Niños 4-8 años  1.0 1.0
Niños  9-13 años  2.0 2.0
Adolescentes  14-18 años  3.0 3.0
Adultos  19 años y más 4.0 3.0
Embarazo  Todas las edades  - 3.0
Amamantamiento  Todas las edades  - 3.0

Prevención de Enfermedades

Caries dental (cavidades y dientes picados)

Bacterias cariogénicas (causantes de las cavidades) especificas (principalmente Streptococcus mutans y Streptococcus sobrinus) encontradas en la placa dental son capaces de metabolizar carbohidratos fermentables (azúcares) y convertirlos en ácidos orgánicos que pueden disolver el esmalte dental susceptible. Si no se controla, las bacterias pueden penetrar capas más profundas del diente y progresar hasta el tejido pulpar blando en el centro. La caries sin tratamiento puede llevar a dolor severo, infecciones locales, pérdida o extracción de dientes, problemas nutricionales, e infecciones sistémicas graves en individuos susceptibles (8). Estudios recientes han sugerido una relación entre la inflamación sistémica en individuos con infección periodontal (encías) y la resistencia a la insulina (9), diabetes tipo 2 (10) y la hipertensión (11). Más aun, una salud oral pobre puede constituir un factor de riesgo para enfermedades cardiovasculares (12, 13).

Efectos sistémicos de fluoruro en los dientes

Una exposición incrementada al fluoruro, más comúnmente a través de la fluoración del agua, se ha encontrado que disminuye la incidencia de caries dental en niños y adultos (14). Entre 1976 y 1987 estudios clínicos en varios países diferentes demostraron que la adición de fluoruro a los suministros de agua comunitarios (0.7-1.2 ppm) redujo la caries en un 30%-60% en dientes primarios (de leche) y un 15%-35% en dientes permanentes (15). El fluoruro consumido en el agua parece tener un efecto sistémico en niños antes de la erupción de los dientes típicamente hasta los 12 años de edad. El fluoruro es incorporado en el esmalte en desarrollo de los dientes e incrementa la resistencia a las caries. Dado que el efecto preventivo de las caries del fluoruro es también tópico (superficie) en los niños después de la erupción de los dientes y en adultos, la protección optima alcanzada por el agua fluorada es más probable a ocurrir a través de tanto la exposición sistémica antes y después de la erupción del diente y la exposición tópica después de la erupción.

Efectos tópicos del fluoruro en los dientes

Investigaciones han indicado que la acción primaria del fluoruro ocurre tópicamente después de la erupción de los dientes en el interior de la boca. El fluoruro ingerido es secretado en la saliva y contribuye a la protección tópica. Cuando el esmalte es parcialmente desmineralizado por ácidos orgánicos, el fluoruro en la saliva puede mejorar la remineralización del esmalte a través de sus interacciones con el calcio y el fosfato. El fluoruro que contiene esmalte remineralizado es más resistente al ataque de ácidos y a la desmineralización. En concentraciones salivales asociadas con una ingesta optima de fluoruro, se ha encontrado que el fluoruro inhibe las enzimas bacterianas, resultando una reducción de la producción de ácido por parte de las bacterias cariogénicas (8, 14). Por otra parte, el uso de productos fluorados aplicados tópicamente incluyendo la pasta de dientes, gel, esmalte, y enjuague bucal se piensa que han contribuido a un decline substancial en la prevalencia de caries en las últimas décadas (16). Un reciente meta-análisis de intervenciones de fluoruro en niños y adolescentes (hasta 16 años de edad) encontró que la aplicación de esmalte de fluoruro durante al menos un año estuvo asociada con un reducción del 37% en caries, perdida, llenado de superficies dentales en superficies dentales cariadas de los dientes de leche; el efecto anti-caries en los dientes permanentes corresponde a una disminución del 43% en comparación con ningún tratamiento o placebo (17). Otro meta-análisis de 67 ensayos controlados con placebo llevadas a cabo en niños y adolescentes demostraron un reducción del 23% en caries, perdida y llenado de las superficies dentales en dentición mixta y permanente con pastas dentales que contenían por lo menos 1,000ppm de fluoruro. La disminución alcanzo un 36% con pastas dentales fluoradas con concentraciones de 2,400-2,800 ppm, mientras que no hubo diferencia entre los niveles de fluoruro por debajo de las 600 ppm y el placebo (18).

Erosión dental (desgaste de los dientes)

El ataque del tejido duro dental por los ácidos distintos de los producidos por la placa bacteriana puede conducir a la pérdida del esmalte dental, también conocida como erosión dental. Los factores involucrados en la erosión dental incluyen alimentos y bebidas acidas (ej. bebidas carbonatadas) y reflujo acido (19). El efecto protector de los agentes fluorurados contra la erosión dental ha sido principalmente observado en estudios in vitro (revisado en 19). Sin embargo, un reciente meta-análisis de cuatro ensayos aleatorios que examinaron el efecto del fluoruro en la pasta dental, esmalte, y saliva en la erosión dental no encontró ningún beneficio en general en comparación con el placebo (20). Estudios clínicos más exhaustivos son necesarios para evaluar si las aplicaciones tópicas de fluoruro pueden prevenir la erosión dental y/o reducir la progresión de las lesiones erosivas existentes.

Osteoporosis

Aunque el fluoruro en dosis farmacológicas ha mostrado ser un agente terapéutico potente para la masa ósea de la columna (vea Tratamiento de Enfermedades) existe poca evidencia de que la fluoruración del agua a niveles óptimos para la prevención de la caries dental sea de ayuda en la prevención de la osteoporosis. La mayoría de los estudios realizados hasta la fecha han fallado en encontrar diferencias clínicamente significativas en la densidad mineral ósea (DMO) o en la incidencia de fracturas cuando se comparó a los residentes de áreas con depósitos de agua fluorurada, con los residentes de áreas sin depósitos de agua fluorurada (21). Sin embargo, dos estudios encontraron que la fluoruración del agua potable estaba asociada con una incidencia disminuida de fractura de cadera en adultos mayores. Además, un estudio en Italia encontró un riesgo significativamente mayor de fracturas femorales (cadera) en hombres y mujeres habitantes de un área con baja fluoruración del agua (0.05 ppm), en comparación con el riesgo de una población similar cuyos suministros de agua eran fluorurados naturalmente (1.45 ppm) a niveles más altos que los óptimos para la prevención de la caries dental (22). Otro estudio en Alemania no encontró diferencias significativas en la densidad mineral ósea entre los residentes de una comunidad cuyos suministros de agua habían sido fluorurados de manera óptima por 30 años (1 ppm) comparados con aquellos que residían en una comunidad sin agua fluorurada. No obstante, este estudio reportó que la incidencia de fractura de cadera en hombres y mujeres de 85 años y más, era significativamente más bajo en la comunidad con agua fluorurada en comparación con la comunidad con agua no fluorurada, a pesar de los niveles más altos de calcio en los suministros de agua no fluorurada (23). Otro estudio basado en comunidad en 1,300 mujeres encontró que las elevadas concentraciones de fluoruro en el suero no se relacionaban con la densidad mineral ósea o la incidencia de fractura osteoporótica (24). Finalmente, un estudio de cohorte nacional en Suecia no encontró alguna asociación entre la exposición crónica a el agua fluorurada y la incidencia de fractura de cadera (25)

Tratamiento de Enfermedades

Osteoporosis

La osteoporosis se caracteriza por una disminución en la densidad mineral ósea (DMO) y un incremento en la fragilidad ósea y la susceptibilidad a fracturarse. En general, la DMO disminuida se asocia con un riesgo de fractura incrementado. Sin embargo, la relación habitual entre la DMO y el riesgo de fractura no siempre se mantiene precisa cuando se utilizan dosis de fluoruro elevadas (farmacológicas) para tratar la osteoporosis. La mayoría de las terapias disponibles para la osteoporosis (ej. estrógeno, calcitonina y bifosfonatos) disminuyen la pérdida de hueso (reabsorción), resultando en pequeños incrementos en la DMO. Las dosis farmacológicas de fluoruro son capaces de producir grandes incrementos en la DMO de la columna lumbar. En general, las pruebas terapéuticas del fluoruro en pacientes con osteoporosis no han logrado demostrar consistentemente disminuciones significativas en la ocurrencia de fracturas vertebrales a pesar de los dramáticos incrementos en la DMO de la columna lumbar (26). Un meta-análisis de 11 estudios controlados, incluyendo 1,429 pacientes encontró que el tratamiento con fluoruro causó un aumento de la DMO de la columna lumbar, pero que no fue asociado con un menor riesgo de fracturas vertebrales (27). Este meta-análisis también encontró que las concentraciones más altas de fluoruro se asociaban con un riesgo incrementado de fracturas no vertebrales después de cuatro años de tratamiento. Los primeros estudios que utilizaron dosis elevadas de fluoruro (>20 mg/día) pueden haber inducido la rápida mineralización ósea en ausencia de una ingesta suficiente de calcio y vitamina D, dando como resultado huesos más densos que no eran mecánicamente más fuertes (28, 29). El análisis de la arquitectura ósea también ha ayudado a esclarecer los efectos inconsistentes de la terapia con fluoruro en la reducción de fracturas vertebrales. La investigación ha indicado que la osteoporosis puede estar asociada con un cambio irreversible en la arquitectura del hueso, conocido como conectividad trabecular disminuida. El hueso normal consiste de unas series de placas interconectadas por barras gruesas. Los huesos severamente osteoporóticos tienen pocas placas y los bastones pueden estar fracturados o desconectados (conectividad trabecular disminuida) (30). A pesar de que la terapia con fluoruro incremente la densidad ósea, ésta probablemente no pueda restaurar la conectividad en los pacientes con una pérdida de hueso severa. De esta manera, la terapia con fluoruro puede ser menos efectiva en los individuos con osteoporosis que ya han tenido una pérdida sustancial de la conectividad trabecular (26, 31)

Por otra parte ensayos aleatorios controlados que usaron dosis de fluoruro más bajas (≤20 md/día) con horarios intermitentes de las dosis, o formulación de liberación lenta (fluoruro de sodio con recubrimiento entérico) han demostrado una reducción en incidentes de fracturas vertebrales y no vertebrales junto con un incremento en la densidad ósea de la espina lumbar (32). Mas sin embargo biopsias óseas de mujeres posmenopáusicas osteoporóticas tratadas con 20 mg/día de fluoruro mostraron evidencia de una mineralización ósea anormal a pesar de suplementación de calcio y vitamina D (33). Adicionalmente, un reciente estudio aleatorio, doble ciego controlado con placebo no encontró ningún incremento en la DMO de la espina lumbar en 180 mujeres posmenopáusicas con osteopenia (osteoporosis temprana) a las cuales se les suplemento diariamente con hasta 10 mg/día de fluoruro por un año (34). Estudios adicionales son requeridos para evaluar si una dosis segura de fluoruro puede ser encontrada para maximizar la formación ósea y al mismo tiempo prevenir los defectos de la mineralización. 

Seguridad de la terapia con fluoruro para la osteoporosis

Efectos secundarios serios han sido asociados con altas dosis de fluoruro usado para tratar la osteoporosis (32). Estos incluyen irritación gastrointestinal, dolor articular en extremidades inferiores, y el desarrollo de deficiencia de calcio y fracturas por estrés. Las razones para la ocurrencia de dolor en las articulaciones de las extremidades inferiores y para las fracturas por estrés en pacientes que toman fluoruro para la osteoporosis aún no están claros, pero pueden estar relacionados a incrementos rápidos en la formación ósea sin el calcio suficiente para soportar tal aumento (26). Actualmente, el fluoruro de sodio con recubrimiento entérico o las preparaciones de monofluorofosfato ofrecen un menor perfil de efectos secundarios que las dosis elevadas de fluoruro de sodio utilizadas en los previos estudios. Adicionalmente, suficiente calcio y vitamina D deberían ser provistos para sostener la formación ósea inducida por el fluoruro. Aunque la terapia con fluoruro puede ser beneficiosa para el tratamiento de la osteoporosis en individuos elegidos apropiadamente y monitoreados estrechamente, la incertidumbre respecto a su seguridad y beneficios en la reducción de fracturas ha evitado que la Administración de Drogas y Alimentos (FDA) apruebe la terapia con fluoruro para la osteoporosis (35). Las combinaciones de dosis más bajas de fluoruro con agentes anti-reabsorción ósea como estrógenos o bifosfonatos, pueden mejorar los resultados terapéuticos mientras que minimizan los efectos secundarios (36, 37). Sin embargo, recientes estudios aleatorios han mostrado que el riesgo de fracturas permanece sin ser alterado si los tratamientos incluyen fluoruro, agentes anti-reabsorción ósea o ambos (32, 33). Estudios adicionales son requeridos para determinar si cualquier combinación de tratamientos podría proveer beneficios terapéuticos substanciales sobre la monoterapia. 

Fuentes

Fluoración del agua

La mayor fuente de fluoruro dietético en la dieta de los EE.UU. es el agua potable. Una adición controlada de fluoruro para el agua es usada por comunidades como una medida de salud pública para ajustar la concentración de fluoruro en el agua potable a un nivel óptimo de 0.7 a 1.2 miligramos (mg) por litro, que corresponde a 0.7-1.2 ppm. Se ha encontrado que este rango de concentración disminuye la incidencia de caries dental mientras que minimiza el riesgo de fluorosis dental y otros efectos adversos. El Departamento de Salud y Servicios Humanos de los EE. UU. ha recomendado recientemente que la concentración optima en el agua potable se fija en 0.7 ppm (vea Seguridad) (6). Aproximadamente el 74% de la población en los EE.UU. recibe agua con el fluoruro suficiente para la prevención de la caries dental (38). La ingesta promedio de fluoruro para los adultos que viven en comunidades fluoruradas varía de 1.4 a 3.4 mg/día en comparación a 0.3 a 1 mg/día en áreas no fluoruradas (7). Debido a que el agua de pozo puede variar ampliamente en su contenido de fluoruro, las personas que consumen agua de pozo debieran hacer medir el contenido de fluoruro de su agua por el distrito local de aguas o por el departamento de salud. La medición de fluoruro en el agua también se justifica en los hogares que utilizan grandes sistemas de tratamientos de agua. Mientras que los ablandadores de agua no están diseñados para cambiar los niveles de fluoruro en el agua, se ha encontrado que los sistemas de osmosis inversa, las unidades de destilación y algunos filtros de agua remueven cantidades significativas de fluoruro del agua. Sin embargo, los filtros tipo Brita no remueven el fluoruro (7, 35).

Las ventas de agua embotellada han aumentado exponencialmente en los EE.UU. en los últimos años y estudios han encontrado que la mayoría de las aguas embotelladas contienen niveles sub-óptimos de fluoruro, aunque existe una variación considerable (39). Por ejemplo, un estudio de 105 diferentes productos de agua embotellada en el área metropolitana de Greater Huston encontró que un poco más del 80% tenían concentraciones de fluoruro de menos de 0.4 ppm; solo un 5% de los productos probados tuvieron concentraciones dentro del rango recomendado (40). Varios otros estudios han reportado hallazgos similares, con la mayoría de aguas embotelladas relativamente bajas en fluoruro, pero muy pocas en el rango optimo o más alto (41-43). La cita aprobada por la FDA “beber agua fluorurada puede reducir el riesgo de caries dental” es solo usada por embotelladores cuando el agua contiene entre 0.6 ppm y 1.0 ppm de fluoruro. Sin embargo, a los embotelladores no se les requiere proveer la concentración de fluoruro en el agua embotellada a menos que el fluoruro fuese agregado (44).

Fórmulas para infantes

Mientras que el consumo de fluoruro del agua presenta muy pocos riesgos de efectos adversos en adultos, excepto en circunstancias extremas (véase Seguridad), el consumo de cantidades relativamente grandes de agua mezclada con fórmulas concentradas, parece incrementar el riesgo del desarrollo de fluorosis dental en infantes (45, 47). Un estudio encontró que, en promedio, al menos la mitad de todo el fluoruro ingerido por infantes de 6 meses y más jóvenes, provenía del agua mezclada con concentrados de formula (48). El estudio de 49 fórmulas para infantes disponibles en la región de Chicago mostro que las formulas listas para tomar, liquidas concentradas, y formulas en polvo (reconstituidas con agua desionizada) tenían significantes concentraciones de fluoruro de 0.15 ppm, 0.27 ppm, y 0.12 ppm, respectivamente (49). El contenido de fluoruro fue significantemente más alto en formulas liquidas concentradas a base de soya que las a base de leche (0.50 ppm vs 0.27 ppm). Usando pesos corporales promedio y el total de la ingesta de fórmulas durante el primer año de vida, los autores estimaron que el riesgo de exceder el nivel de ingesta máxima tolerable para la ingesta de fluoruro era mínimo cuando las formulas liquidas concentradas y en polvo eran reconstituidas con agua con un contenido de menos de 0.5 ppm de fluoruro, pero el riesgo era máximo con 1.0 ppm de agua fluorurada. Agua libre de fluoración o baja en fluoruro denominada como “desionizada,” “purificada,” “desmineralizada,” o “producida a través de osmosis inversa” pueden ser utilizas con el fin de minimizar el riesgo de una fluorosis leve (44). Sin embargo infantes de entre 6 y 12 años de edad pueden no alcanzar la adecuada ingesta de fluoruro si son alimentados con fórmulas listas para tomar o formulas reconstituidas con agua que contenga menos de 0.4 ppm (49).

Fuentes alimenticias y bebidas

El contenido de fluoruro de la mayoría de los alimentos es bajo (menos de 0.05 mg/100 gramos o 0.5 ppm). Las fuentes altas en fluoruro incluyen el té, el cual concentra fluoruro en sus hojas, y los peces marinos que se consumen con huesos (ej. sardinas). Alimentos hechos con pollo mecánicamente separado (deshuesado), como carnes enlatadas, salchichas, y comida para bebes, también aportan fluoruro a la dieta (50). Además, ciertos jugos de frutas, particularmente de uva, tienen a menudo altas concentraciones de fluoruro (51). Por lo general, los alimentos sólo aportan de 0.3-0.6 mg de la ingesta diaria de fluoruro. Un hombre adulto residente en una comunidad con agua fluorurada tiene una ingesta que varía de 1 a 3 mg/día. La ingesta en áreas no fluoruradas es menor a 1 mg/día (2). La tabla entrega un rango del contenido de fluoruro de algunos alimentos ricos en fluoruro. Para más información en el contenido de fluoruro de alimentos y bebidas, busque en la base de datos nacional del fluoruro USDA.

Alimentos Porción Fluoruro (mg) Fluoruro (ppm)*
Te negro 100 mL (3.5 onzas de fluido) 0.25-0.39 2.5-3.9
Jugo de frutas 100 mL (3.5 onzas de fluido) 0.02-0.21 0.2-2.1
Cangrejo (enlatado) 100 g (3.5 onzas) 0.21 2.1
Arroz (cocido) 100 g (3.5 onzas) 0.04 0.4
Pescado (cocido) 100 g (3.5 onzas) 0.02 0.2
Pollo 100 g (3.5 onzas) 0.015 0.15
*1.0 partes por millón (ppm) = 1 miligramo/litro (mg/L)


Suplementos de fluoruro

Los suplementos de fluoruro — disponibles sólo por prescripción en los EE.UU — pretenden ser para infantes de 6 meses en adelante y niños de hasta 16 años de edad que viven en áreas con menores concentraciones de fluoruro en el agua, con el propósito de llevar su ingesta hasta 1 mg/día aproximadamente (7). La Asociación Dental Americana en Asuntos Científicos recomienda la prescripción de suplementos de fluoruro solo para aquellos niños que se encuentran en un alto riesgo de desarrollar caries dental (52). El esquema de la dosis suplementaria de fluoruro en la tabla a continuación fue recomendado por la Asociación Dental Americana, la Academia Americana de Odontología Pediátrica y la Academia Americana de Pediatras (52, 53). Es necesario el conocimiento de la concentración de fluoruro del agua potable local, así como el de otras posibles fuentes de ingesta de fluoruro. Para información más detallada en relación al fluoruro y la prevención de la caries dental, visite el sitio web de la Asociación Dental Americana.

Esquema de Suplementos de Fluoruro de la Asociación Dental Americana

Edad

Nivel de Ion Fluoruro en Agua Potable (ppm)*

<0.3 ppm

0.3-0.6 ppm

>0.6 ppm

Nacimiento - 6 meses

Ninguno

Ninguno

Ninguno

6 meses - 3 años

0.25 mg/día**

Ninguno

Ninguno

3 años - 6 años

0.50 mg/día

0.25 mg/día

Ninguno

6 años -16 años

1.0 mg/día

0.50 mg/día

Ninguno

*1.0 partes por millón (ppm) = 1 miligramo/litro (mg/L)

**2.2 mg de fluoruro de sodio contiene 1 mg de ion fluoruro.

Pasta dental

Las pastas de dientes fluoruradas son bastante efectivas en la prevención de caries detales pero también aportan considerablemente a la ingesta de fluoruro de los niños, especialmente en niños pequeños, los que son más propensos a tragarse la pasta dental. Los investigadores estiman que los niños por debajo de los 6 años de edad ingieren un promedio de 0.3 mg de fluoruro de la pasta dental con cada cepillado. Los niños menores de 6 años de edad que ingieren más de dos a tres veces la ingesta recomendada de fluoruro, se encuentran en un riesgo incrementado de tener dientes permanentes moteados o con manchas blancas, conocido como fluorosis dental. La principal fuente de ingesta de fluoruro en exceso en este grupo etario proviene de tragar pasta dental con fluoruro. Para prevenir la fluorosis dental a la vez que se provee una protección óptima contra la caries dental, se recomienda que los padres supervisen a los niños menores de 6 años de edad cuando estos se cepillan los dientes con pastas fluoruradas. Además, para desalentar la deglución de la pasta dental, los niños deben ser supervisados durante el cepillado y niños jóvenes deben ser estimulados a usar cantidades muy pequeñas de pasta dental-(una capa delgada de pasta dental que cubra menos de la mitad de la superficie cerdada de un cepillo dental para niños) para niños menores de 3 años, y para niños de entre 3 y 6 años de edad la cantidad de pasta debe ser del tamaño de un guisante (54, 55). Curiosamente, se ha sugerido que el manejo del riesgo de fluorosis dental en infantes que ingieren pasta dental fluorurada podría incluir el uso de la formulación de pasta dental que reduce la absorción gastrointestinal y biodisponibilidad del fluoruro (56)

Fluoruración de la sal

La fluoruración de la sal ha sido implementada en varios países alrededor del mundo como una alternativa a la fluoruración del agua para promover el consumo de fluoruro y mejorar el cuidado oral. Debido a que la fluoruración del agua es extensivamente llevada a cabo en los EE. UU., el fluoruro no es agregado a la sal. Estudios epidemiológicos han mostrado que la incidencia de dientes con caries disminuyo dramáticamente en las regiones donde programas de fluoruración de la sal fueron desarrollados. Mientras que las preocupaciones alrededor de la hipertensión y el control de la ingesta de la población deberían ser abordadas, no se han reportado efectos adversos relacionados a la fluoruración de la sal (revisado en 57). De acuerdo la Organización Mundial de la Salud (OMS), la fluoruración de la sal, en menor medida, la fluoruración de la leche son alternativas accesibles para mejorar la higiene oral en áreas donde el acceso a servicios de la salud oral es limitado y la fluoruración del agua pública no es factible (58).

Seguridad

Efectos adversos

La fluoruración del agua potable pública en los EE.UU. se inició hace más de 70 años. Desde entonces, se le han atribuido una serie de efectos adversos a la fluoruración del agua. Sin embargo, investigaciones científicas exhaustivas no han descubierto evidencia de riesgos incrementados de cáncer, enfermedad del corazón, enfermedad renal, enfermedad hepática, Alzheimer, defectos de nacimiento, o síndrome de Down (6, 59, 60). Un numero de estudios epidemiológicos, mayormente publicados en diarios Chinos, han investigado la asociación entre el contenido del fluoruro en el agua potable y el desarrollo neurológico de los niños. Un meta-análisis de 27 estudios, mayormente llevados a cabo en China, encontró coeficientes intelectuales (IQ) más bajos en niños expuestos a concentraciones de fluoruro que van de 1.8 mg/L a 11 mg/L del agua potable (61). Limitaciones serias, incluyendo heterogeneidad significativa entre los estudios y la co-ocurrencia de otros agentes neurotóxicos en el agua potable, obstaculiza la fuerza del hallazgo y su aplicación a la configuración de los EE.UU. La Academia de Nutrición y Dietética ha estimado recientemente que solo evidencia limitada apoya una asociación entre el contenido de fluoruro en el agua y el IQ de los niños (44). Finalmente, un reciente estudio prospectivo en Nueva Zelanda basado en una cohorte poblacional con un seguimiento de aproximadamente cuatro décadas no encontró asociación alguna entre la exposición al fluoruro en el contexto de los programas de fluoruración del agua comunitaria y los coeficientes intelectuales medidos durante la niñez y a la edad de 38 años (62)

Toxicidad aguda

El fluoruro es tóxico cuando es consumido en cantidades excesivas, por lo que los productos de fluoruro concentrado debiesen utilizarse y almacenarse con precaución para prevenir la posibilidad de un envenenamiento agudo por fluoruro, especialmente en niños y otros individuos vulnerables. Se considera que la dosis más baja que puede ocasionar síntomas adversos es de 5 mg/kg de peso corporal, y considerando la dosis letal más baja en 15 mg/kg de peso corporal. Náuseas, dolor abdominal y vómito casi siempre acompañan a la toxicidad aguda por fluoruro. Otros síntomas como la diarrea, la salivación y lagrimeo excesivo, sudoración, y la debilidad generalizada también pueden aparecer (60). A fin de prevenir el envenenamiento agudo por fluoruro, la Asociación Dental Americana ha recomendado que no se dispensen más de 120 mg de fluoruro (224 mg de fluoruro de sodio) en cada ocasión (35). El uso de altas dosis de fluoruro para tratar la osteoporosis ha sido asociado con algunos efectos adversos, los cuales son discutidos en la sección Tratamiento de Enfermedad. 

Fluorosis dental

La forma más leve de fluorosis dental sólo la detecta un observador entrenado y se caracteriza por pequeñas manchas o puntos blancos sobre el esmalte de los dientes. La fluorosis dental moderada está caracterizada por manchas y tinciones leves en los dientes y la fluorosis dental severa deriva en tinciones marcadas y picaduras en los dientes. En sus formas moderada y severa, la fluorosis dental se vuelve una preocupación cosmética cuando afecta a los incisivos y caninos (dientes delanteros). La fluorosis dental es el resultado de un exceso de ingesta de fluoruro previa la erupción de los primeros dientes permanentes (generalmente antes de los 8 años). También es una condición que depende de la dosis, donde las ingestas de fluoruro más altas se asocian con efectos más pronunciados sobre los dientes. La incidencia de fluorosis dental leve o moderada ha incrementado significativamente en los últimos años, mayormente debido a una ingesta incrementada de fluoruro de fórmulas reconstituidas para infantes y pastas dentales, aunque el uso inapropiado de suplementos de fluoruro pueden también contribuir (47). De acuerdo con un  sondeo nacional de los EE. UU., la Encuesta Nacional de Salud y Nutrición, 1999-2004, un 23% de las personas de entre 6 a 49 años de edad tuvieron algún grado de fluorosis dental (63). En 1997, la Junta de Alimentos y Nutrición Estadounidense (FNB) del Instituto de Medicina estableció el nivel máximo de ingesta tolerable (NM) para el fluoruro basado en la prevención de la fluorosis dental moderada (7).  


Nivel Máximo de Ingesta Tolerable (NM) para Fluoruro
Grupo Etario NM (mg/día)
Infantes 0-6 meses 0.7
Infantes 7-12 meses 0.9
Niños 1-3 años 1.3
Niños 4-8 años   2.2
Niños 9-13 años   10.0
Adolescentes 14-18 años 10.0
Adultos 19 años o más 10.0

Siguiendo las recomendaciones del Consejo Nacional de Investigación Científica, el EPA estadounidense está actualmente reevaluando el nivel máximo tolerable del fluoruro en agua potable (establecido en 4 mg/L) para asegurarse que protege a niños de desarrollar una fluorosis dental severa (44, 59). La EPA también ha establecido una norma estándar no exigible del nivel de fluoruro de 2 mg/L para prevenir la fluorosis dental moderada (64).  

Fluorosis esquelética

Una ingesta de fluoruro a niveles excesivos por prolongados periodos de tiempo pueden llevar a cambios en la estructura ósea conocidos como fluorosis esquelética. Las etapas tempranas de la fluorosis esquelética están caracterizadas por un incremento en la masa ósea, detectable por rayos-X. Si muy altas ingestas de fluoruro persisten por muchos años, dolor en las articulaciones y rigidez pueden resultar de los cambios esqueléticos. La forma más severa de fluorosis esquelética es conocida como fluorosis esquelética paralizante, la cual puede resultar en la calcificación de ligamentos, inmovilidad, desgastamiento muscular, y problemas neurológicos relacionados a la compresión de la medula espinal. Mientras que la fluorosis esquelética es endémica en muchas regiones del mundo con concentraciones altamente naturales de fluoruro en el agua potable, la fluorosis esquelética paralizante puede ocurrir solo cuando la ingesta de fluoruro exceda 10 mg/día por lo menos durante un periodo de 10 años (7, 65). Raros casos de fluorosis esquelética en los EE. UU. han sido observados en consumidores de grandes cantidades de té (66-69). Debido al riesgo potencial de fluorosis esquelética, la EPA, la cual regula la fluoruración del agua bajo el Acta de Agua Potable Segura (Safe Drinking Water Act), está actualmente revisando el máximo nivel de fluoruro permitido en el agua potable- un nivel actualmente establecido a 4 mg/L (44, 59)

Interacciones con drogas/fármacos

Los suplementos de calcio, como también antiácidos que contienen calcio y aluminio, pueden disminuir la absorción de fluoruro. Lo más recomendable es tomar estos productos 2 horas antes o después de tomar suplementos de fluoruro (70)

Recomendación del Instituto Linus Pauling

La seguridad y los beneficios a la salud públicos de agua óptimamente fluorurados para la prevención de la caries dental en las personas de todas las edades ha sido bien establecido. El Instituto Linus Pauling apoya las recomendaciones de la Asociación Dental Americana y los Centros para el Control y Prevención de Enfermedades, que incluyen agua óptimamente fluorurada y el uso de pasta dental fluorurada, enjuague bucal fluorurado, esmalte fluorurado, y cuando es necesario, suplementación con fluoruro. Debido al riesgo de fluorosis, cualquier suplementación con fluoruro debiese ser prescrita y estrechamente monitoreada por un dentista o doctor. 


Autores y Críticos

Escrito en Febrero de 2001 por:
Jane Higdon, Ph.D.
Instituto Linus Pauling
Universidad del Estado de Oregon

Actualizado en Septiembre de 2007 por:
Victoria J. Drake, Ph.D.
Instituto Linus Pauling
Universidad del Estado de Oregon

Actualizado en Noviembre de 2013 por
Barbara Delage, Ph.D.
Instituto Linus Pauling
Universidad del Estado de Oregon

Revisado en Enero de 2014 por:
John J. Warren, D.D.S., M.S.
Profesor
Preventiva y Comunidad de Odontología
Colegio de Odontología
La Universidad de Iowa

Traducido al Español en 2015 por:
Silvia Vazquez Lima
Instituto Linus Pauling
Universidad del Estado de Oregon

Última actualización 4/29/15  Derechos de autoría 2001-2015  Instituto Linus Pauling


Referencias

1.  Cerklewski FL. Fluoride bioavailability--nutritional and clinical aspects. Nutr Res. 1997;17:907-929.

2.  Nielsen FH. Ultratrace minerals. In: Shils M, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Williams & Wilkins; 1999:283-303.

3.  Cerklewski FL. Fluoride--essential or just beneficial. Nutrition. 1998;14(5):475-476.

4.  Cerklewski FL. Fluorine. In: O'Dell BL, Sunde RA, eds. Handbook of nutritionally essential minerals. New York: Marcel Dekker, Inc; 1997:583-602.

5.  Press release. 2011. EPA and HHS Announce New Scientific Assessments and Actions on Fluoride / Agencies working together to maintain benefits of preventing tooth decay while preventing excessive exposure.

6.  US Department of Health and Human Services Federal Panel on Community Water Fluoridation. US Public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Reports. Vol 130, 2015. Available at: http://www.publichealthreports.org/documents/PHS_2015_Fluoride_Guidelines.pdf. Accessed 4/29/15.

7. Food and Nutrition Board, Institute of Medicine. Fluoride. Dietary Reference Intakes: Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington D.C.: National Academy Press; 1997:288-313.  (National Academy Press)

8.  Centers for Disease Control. Achievements in public health, 1900-1999: fluoridation of drinking water to prevent dental caries. MMWR. 1999;48:933-940.

9.  Demmer RT, Squillaro A, Papapanou PN, et al. Periodontal infection, systemic inflammation, and insulin resistance: results from the continuous National Health and Nutrition Examination Survey (NHANES) 1999-2004. Diabetes Care. 2012;35(11):2235-2242.  (PubMed)

10.  Demmer RT, Jacobs DR, Jr., Desvarieux M. Periodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study. Diabetes Care. 2008;31(7):1373-1379.  (PubMed)

11.  Desvarieux M, Demmer RT, Jacobs DR, Jr., et al. Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J Hypertens. 2010;28(7):1413-1421.  (PubMed)

12.  Demmer RT, Desvarieux M. Periodontal infections and cardiovascular disease: the heart of the matter. J Am Dent Assoc. 2006;137 Suppl:14S-20S; quiz 38S.  (PubMed)

13.  Zoellner H. Dental infection and vascular disease. Semin Thromb Hemost. 2011;37(3):181-192.  (PubMed)

14.  DePaola DP. Nutrition in relation to dental medicine. In: Shils M, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Williams & Wilkins; 1999:1099-1124.

15.  Newbrun E. Effectiveness of water fluoridation. J Public Health Dent. 1989;49(5 Spec No):279-289.  (PubMed)

16.  Dye BA, Tan S, Smith V, Lewis BG, Barker LK, Thornton-Evans G. Trends in oral health status: United States, 1988-1994 and 1999-2004. National Center for Health Statistics. Vital Health Stat 11(248), 2007. Available at: http://www.cdc.gov/nchs/data/series/sr_11/sr11_248.pdf. Accessed 1/15/14.

17.  Marinho VC, Worthington HV, Walsh T, Clarkson JE. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2013;7:CD002279.  (PubMed)

18.  Walsh T, Worthington HV, Glenny AM, Appelbe P, Marinho VC, Shi X. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2010(1):CD007868.  (PubMed)

19.  Magalhaes AC, Wiegand A, Rios D, Honorio HM, Buzalaf MA. Insights into preventive measures for dental erosion. J Appl Oral Sci. 2009;17(2):75-86.  (PubMed)

20.  Zini A, Krivoroutski Y, Vered Y. Primary prevention of dental erosion by calcium and fluoride: a systematic review. Int J Dent Hyg. 2013; doi: 10.1111/idh.12049. [Epub ahead of print]  (PubMed)

21.  Krall EA, Dawson-Hughes B. Osteoporosis. In: Shils M, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Williams & Wilkins; 1999:1353-1364. 

22.  Fabiani L, Leoni V, Vitali M. Bone-fracture incidence rate in two Italian regions with different fluoride concentration levels in drinking water. J Trace Elem Med Biol. 1999;13(4):232-237.  (PubMed)

23.  Lehmann R, Wapniarz M, Hofmann B, Pieper B, Haubitz I, Allolio B. Drinking water fluoridation: bone mineral density and hip fracture incidence. Bone. 1998;22(3):273-278.  (PubMed)

24.  Sowers M, Whitford GM, Clark MK, Jannausch ML. Elevated serum fluoride concentrations in women are not related to fractures and bone mineral density. J Nutr. 2005;135(9):2247-2252.  (PubMed)

25.  Nasman P, Ekstrand J, Granath F, Ekbom A, Fored CM. Estimated drinking water fluoride exposure and risk of hip fracture: a cohort study. J Dent Res. 2013;92(11):1029-1034.  (PubMed)

26.  Cesar Libanati K-H. Fluoride therapy for osteoporosis. In: Marcus R, ed. Osteoporosis. San Diego: Academic Press; 1996:1259-1277.

27.  Haguenauer D, Welch V, Shea B, Tugwell P, Adachi JD, Wells G. Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos Int. 2000;11(9):727-738.  (PubMed)

28.  Riggs BL, Hodgson SF, O'Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med. 1990;322(12):802-809.  (PubMed)

29.  Lundy MW, Stauffer M, Wergedal JE, et al. Histomorphometric analysis of iliac crest bone biopsies in placebo-treated versus fluoride-treated subjects. Osteoporos Int. 1995;5(2):115-129.  (PubMed)

30.  Fields AJ, Keaveny TM. Trabecular architecture and vertebral fragility in osteoporosis. Curr Osteoporos Rep. 2012;10(2):132-140.  (PubMed)

31.  Balena R, Kleerekoper M, Foldes JA, et al. Effects of different regimens of sodium fluoride treatment for osteoporosis on the structure, remodeling and mineralization of bone. Osteoporos Int. 1998;8(5):428-435.  (PubMed)

32.  Vestergaard P, Jorgensen NR, Schwarz P, Mosekilde L. Effects of treatment with fluoride on bone mineral density and fracture risk--a meta-analysis. Osteoporos Int. 2008;19(3):257-268.  (PubMed)

33.  Reid IR, Cundy T, Grey AB, et al. Addition of monofluorophosphate to estrogen therapy in postmenopausal osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92(7):2446-2452.  (PubMed)

34.  Grey A, Garg S, Dray M, et al. Low-dose fluoride in postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(6):2301-2307.  (PubMed)

35.  American Dietetic Association. Position of the American Dietetic Association: the impact of fluoride on health. J Am Diet Assoc. 2001;101(1):126-132.  (PubMed)

36.  Murray TM, Ste-Marie LG. Prevention and management of osteoporosis: consensus statements from the Scientific Advisory Board of the Osteoporosis Society of Canada. 7. Fluoride therapy for osteoporosis. CMAJ.1996;155(7):949-954.  (PubMed)

37.  Alexandersen P, Riis BJ, Christiansen C. Monofluorophosphate combined with hormone replacement therapy induces a synergistic effect on bone mass by dissociating bone formation and resorption in postmenopausal women: a randomized study. J Clin Endocrinol Metab. 1999;84(9):3013-3020.  (PubMed)

38.  National Center for Chronic Disease Prevention and Health Promotion, Division of Oral Health. Community water fluoridation: 2010 water fluoridation statistics.  Available at: http://www.cdc.gov/fluoridation/statistics/2010stats.htm. Accessed 1/15/14.

39.  Cutrufelli R, Pehrsson P, Haytowitz D, Patterson K, Holden J. USDA National Fluoride Database of Selected Beverages and Foods, Release 2. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture; 2005.  Available at: http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/Fluoride/F02.pdf. Accessed 1/15/14.

40.  Quock RL, Chan JT. Fluoride content of bottled water and its implications for the general dentist. Gen Dent. 2009;57(1):29-33.  (PubMed)

41.  Van Winkle S, Levy SM, Kiritsy MC, Heilman JR, Wefel JS, Marshall T. Water and formula fluoride concentrations: significance for infants fed formula. Pediatr Dent. 1995;17(4):305-310.  (PubMed)

42.  Tate WH, Chan JT. Fluoride concentrations in bottled and filtered waters. Gen Dent. 1994;42(4):362-366.

43.  McGuire S. Fluoride content of bottled water. N Engl J Med. 1989;321(12):836-837.

44.  Palmer CA, Gilbert JA, Academy of N, Dietetics. Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. J Acad Nutr Diet. 2012;112(9):1443-1453.  (PubMed)

45.  Marshall TA, Levy SM, Warren JJ, Broffitt B, Eichenberger-Gilmore JM, Stumbo PJ. Associations between Intakes of fluoride from beverages during infancy and dental fluorosis of primary teeth. J Am Coll Nutr. 2004;23(2):108-116.  (PubMed)

46.  Pendrys DG. Risk of enamel fluorosis in nonfluoridated and optimally fluoridated populations: considerations for the dental professional. J Am Dent Assoc. 2000;131(6):746-755.  (PubMed)

47.  Levy SM, Broffitt B, Marshall TA, Eichenberger-Gilmore JM, Warren JJ. Associations between fluorosis of permanent incisors and fluoride intake from infant formula, other dietary sources and dentifrice during early childhood. J Am Dent Assoc. 2010;141(10):1190-1201.  (PubMed)

48.  Levy SM, Kohout FJ, Guha-Chowdhury N, Kiritsy MC, Heilman JR, Wefel JS. Infants' fluoride intake from drinking water alone, and from water added to formula, beverages, and food. J Dent Res. 1995;74(7):1399-1407.  (PubMed)

49.  Siew C, Strock S, Ristic H, et al. Assessing a potential risk factor for enamel fluorosis: a preliminary evaluation of fluoride content in infant formulas. J Am Dent Assoc. 2009;140(10):1228-1236.  (PubMed)

50. Fein NJ, Cerklewski FL. Fluoride content of foods made with mechanically separated chicken. J Agric Food Chem. 2001;49(9):4284-4286.  (PubMed)

51.  Kiritsy MC, Levy SM, Warren JJ, Guha-Chowdhury N, Heilman JR, Marshall T. Assessing fluoride concentrations of juices and juice-flavored drinks. J Am Dent Assoc. 1996;127(7):895-902.  (PubMed)

52.  Rozier RG, Adair S, Graham F, et al. Evidence-based clinical recommendations on the prescription of dietary fluoride supplements for caries prevention: a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2010;141(12):1480-1489.  (PubMed)

53.  Centers for Disease Control and Prevention. Recommendations for using fluoride to prevent and control dental caries in the United States. MMWR Recomm Rep. 2001;50(RR-14):1-42.  Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5014a1.htm

54.  Section on Pediatric Dentistry and Oral Health. Preventive oral health intervention for pediatricians. Pediatrics. 2008;122(6):1387-1394.  (PubMed)

55.  American Dental Association Council on Scientific Affairs. Fluoride toothpaste use for young children. J Am Dent Assoc. 2014;145(2):190-191.  (PubMed)

56.  Falcao A, Tenuta LM, Cury JA. Fluoride gastrointestinal absorption from Na2FPO3/CaCO3- and NaF/SiO2-based toothpastes. Caries Res. 2013;47(3):226-233.  (PubMed)

57.  Pollick HF. Salt fluoridation: a review. J Calif Dent Assoc. 2013;41(6):395-397, 400-394.  (PubMed)

58.  Marthaler TM, Petersen PE. Salt fluoridation--an alternative in automatic prevention of dental caries. Int Dent J. 2005;55(6):351-358.  (PubMed)

59.  Committee on Fluoride in Drinking Water NRC. 2006. Fluoride in drinking water: a scientific review of EPA's Standards. Washington D.C.: National Academies Press.

60.  Whitford GM. Acute toxicity of ingested fluoride. Monogr Oral Sci. 2011;22:66-80.  (PubMed)

61.  Choi AL, Sun G, Zhang Y, Grandjean P. Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environ Health Perspect. 2012;120(10):1362-1368.  (PubMed)

62.  Broadbent JM, Thomson WM, Ramrakha S, et al. Community Water Fluoridation and Intelligence: Prospective Study in New Zealand. Am J Public Health. 2015;105(1):72-76.  (PubMed)

63.  Beltrán-Aguilar ED, Barker L, Dye BA. Prevalence and severity of dental fluorosis in the United States, 1999-2004. NCHS data brief, no 53. Hyattsville, MD: National Center for Health Statistics; 2010.  Available at: http://www.cdc.gov/nchs/data/databriefs/db53.pdf

64.  Agency. UEP. New fluoride risk assessment and relative source contribution documents. 2011. Available at: http://water.epa.gov/action/advisories/drinking/upload/fluoridefactsheet.pdf

65.  Whitford GM. The metabolism and toxicity of fluoride. Vol 13. Basel: S. Karger AG; 1996.

66.  Hallanger Johnson JE, Kearns AE, Doran PM, Khoo TK, Wermers RA. Fluoride-related bone disease associated with habitual tea consumption. Mayo Clin Proc. 2007;82(6):719-724.  (PubMed)

67.  Whyte MP, Totty WG, Lim VT, Whitford GM. Skeletal fluorosis from instant tea. J Bone Miner Res. 2008;23(5):759-769.  (PubMed)

68.  Izuora K, Twombly JG, Whitford GM, Demertzis J, Pacifici R, Whyte MP. Skeletal fluorosis from brewed tea. J Clin Endocrinol Metab. 2011;96(8):2318-2324.  (PubMed)

69.  Kakumanu N, Rao SD. Images in clinical medicine. Skeletal fluorosis due to excessive tea drinking. N Engl J Med. 2013;368(12):1140.  (PubMed)

70.  Minerals. Drug Facts and Comparisons. St. Louis: Facts and Comparisons; 2000:27-51.